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The Banff Challenge 2a poses 2 problems relative to significance of discovery claim (http://
www-cdf.fnal.gov/~trj/bc2probs.pdf), which are meant to simulate the task of discovering new
particle or phenomena in high-energy physics experiments. We tried to apply frequentist hypothesis
testing tools to these problems. Following a brief overview of the problematics, we summarise the
main steps of the analysis and the results obtained. For problem 1 the test statistic relies on the
bracketing of a region potentially rich in signal. The power achieved varies from 12% to 100% for
the test bench cases. For problem 2 the test statistic is based on Kolmogorov-Smirnov’s one. The
power is 76% for 75 signal events.

I. PROBLEM 1: A GAUSSIAN SIGNAL PEAK

ON AN EXPONENTIAL BACKGROUND

The observation is a data-set of ∼103 events for which
one measured the marks, x ∈ [0; 1], of each event.
The events in the data-set are distributed according to
2 statistic laws defining 2 categories: signal or noise.
A signal event is Gaussian distributed of known stan-
dard deviation σ = 0.03 but unknown mean E ∈ [0; 1].
A noise event follows an exponential law of parameter
C = 1/λ = 10. Both statistical distributions are trun-
cated to the range [0; 1]. The challenge is to build the
most powerful method to detect any signal event in the
data-set given that the false alarm rate must be smaller
than 1%. Secondly, when stating evidence for a signal
one should also provide an estimate of its position, E,
and its amplitude.

The general analysis strategy proceeds in 2 steps. First
we construct a bracketing sub-interval of [0; 1] enriched
in signal events. Then we proceed with hypothesis test-
ing for signal or background on the basis of the number
of events lying in this sub-interval.

A. Construction of the bracketing sub-interval

Let us assume that the signal distribution is centred
at a particular value E. Then, let us build a decision
rule that for each event states whereas it is a signal event
or a background one. The most powerful test statistic
is to select signal events accordingly to the score of the
likelihoods ratio of the signal probability density function
(pdf) to the background one. Alternatively, taking the
logarithm of this score, the test for accepting an event as
a signal event writes as:

(x − E)2

σ2
− 2Cx ≤ T, (1)

where T is the threshold value for acceptance. Its optimal
value a priori depends on the hypothesis made for E.
The acceptance region defined by Eq. 1 resumes to a
sub-interval of [0; 1].

1. Centre of the bracketing interval

Let us set x0 = E + σ2C and redefine the test thresh-
old value as T ′ = σ2

(

T + 2CE + σ2C2
)

. Then Eq. 1
rewrites as:

(x − x0)
2 ≤ T ′. (2)

From the latter equation one sees that the most pow-
erful bracketing interval for the signal is centred some-
what to the right of the most likely signal value, at x0,
where the background is weaker. Note that x0 does not
depend on the test threshold T ′ which is a strong re-
sult. The width 2∆ of the bracketing interval however
depends on the choice of the threshold value, T ′. Over-
all, the performances of the decision rule depend only on
the choices made for x0 and ∆. Therefore, in the fol-
lowing we wont refer anymore to the selection threshold
value T ′ but rather to the half width ∆.

2. Width of the bracketing interval

The centre of the bracketing interval being optimally
fixed to x0, we are left with picking an appropriate value
for the interval’s half width ∆. That for, let us write
as Ne the total number of events in the data-set, Ns

the number of signal events and Nb the number of back-
ground events, with Ne = Ns + Nb. Let us further write
ps,1 and pb,1 the probabilities for a signal or background
event to fall in the bracketing interval. Provided that the
bracketing interval does not overlap with boundaries at
0 or 1, one has:

ps,1 =
erfσ(∆ + Cσ2) + erfσ(∆ − Cσ2)

2 erfσ(1)
, (3)

pb,1 =2 sh(C∆)
e−Cx0

1 − e−C
, (4)

where we write erfσ(x) = erf(x/(
√

2σ)).
We expect the number of signal events in the data-set

to be small as compared to the number of background



events. Therefore, even for an optimal choice of ∆ the
bracketing sub-interval will be contaminated by a large
number of background events, typically B = Nbpb,1. The

uncertainty on this contamination is of order
√

B which is
to be compared to the expected number of signal events,
given as S = Nsps,1. Therefore, in order to get the most
significance for a signal excess in the bracketing inter-
val we want to maximise the ratio S/

√
B. Since Nb and

Ns are fixed, but unknown, we are left with maximising
the ratio ps,1/

√
pb,1 . From equations 3 one can check

that there is an optimal choice ∆0 for ∆, whatever x0.
With the numerical values C = 10 and σ = 0.03 one gets
∆0 = 0.0421 = 1.4σ. Note also that for a fixed value
of ∆, the ratio S/

√
B increases exponentially with the

product Cx0.
In the following all bracketing intervals we use are

constructed according to the previous optimality crite-
rion. That is to say, for a signal hypothesis centred
on E the corresponding bracketing interval is centred on
x0 = E + σ2C and it has a half width ∆0 = 1.4σ.

B. Evidence for a Signal

In order to test whether or not the data-set contains
any signal we build Nbin bracketing intervals regularly
centred at marks x0,i with i ∈ [1; Nbin]. We write ni the
number of events that fall within the ith bracket. Based
on this observation, we perform Nbin hypothesis tests
assuming a pure background distribution. The tests are
done by fixing the false alarm rate to a common value
αNbin

. If any of these tests fails we claim evidence for a
signal.

1. Ordering rule and test statistic

When building the hypothesis test we are left with a
large number of possibilities for the ordering of the vari-
ous possible values for the observation ni. The ordering
rule we found to be the most powerful is to rank the val-
ues of ni from the highest, the less in favour of a pure
background, to the lowest. That is to say, we accept the

background hypothesis H
(i)
0 for the ith bracket provided

that:

H
(i)
0 : ni ≤ ni,c, (5)

where ni,c is a threshold value to adjust in order to ensure
a Type I error lower than αNbin

. We tried more complex
orderings, based on the most likely signal hypothesis, but
they were less powerful while requiring more intensive
computations.

2. P-value for a single bracket

Generally speaking, the probability to observe ni

events in the ith bracket writes:

pi(ni; Ns, Ne) =

inf {ni,Ns}
∑

ks=sup {0,ni−Nb}

Cks

Ns
pks

s,1(1 − ps,1)
Ns−ks

× Ckb

Nb
pkb

b,1(1 − pb,1)
Nb−kb ,

(6)

with ks + kb = ni and where we assume Ns events of
signal and Nb = Ne − Ns of background. In the case of
a pure background hypothesis, Ns = 0, the sum in Eq. 6
reduces to a single term with ks = 0 and kb = ni. The p-
value corresponding to our choice of test statistic writes
as:

Pb,i(ni; Ne) =
+∞
∑

k=ni

pi(k; 0, Ne). (7)

Note that this p-value takes discrete values. Therefore it
is not possible to ensure exact coverage for a given confi-
dence level CL = 1−αNbin

. The definition we use in Eq. 7
is a conservative choice resulting in over-coverage pro-

vided that one accepts the background hypothesis H
(i)
0

for Pb(ni) ≥ αNbin
.

3. P-value for the background only hypothesis

Repeating the hypothesis tests for the different brack-
eting intervals, the background only hypothesis, H0, is
accepted as:

H0 : inf
i∈[1;Nbin]

Pb,i(ni; Ne) ≥ αNbin
. (8)

If the Nbin tests would be independent the CL associated
to the test on the Nbin brackets would simply be the
product of the individual CLs for each bracket, resulting
in:

1 − α = (1 − αNbin
)Nbin , (9)

where α = 1% is the Type I error for the complete test.
However, the tests on the individual brackets are not in-
dependent since the values of ni are correlated from one
bracket to another. Nevertheless, it was found that by
susbtituting Nbin by an effective dimension Neff eq. 9 is
satisfied. The effective dimension writes as:

Neff =
∆x0√
2δx0∆

, (10)

with ∆x0 = x0,Nbin
− x0,1 the full range spanned by the

bracketing intervals centres and δx0 the constant step
between two successive brackets centres. Following, we
define the p-value for the background only hypothesis as:

Pb(Ne) = 1 −
(

1 − inf
i∈[1;Nbin]

Pb,i(ni; Ne)

)Neff

. (11)



We claim an evidence for a signal provided that: Pb < α,
where the type I error is ensured to be no more than α.
For the brackets stepping we take δx0 = σ/2 and we span
the range [0; 1]. Note that varying the brackets step size
δx0 by a factor of two did not change significantly the
algorithm performances.

C. Confidence belt for signal parameters

Whenever we find an evidence for a signal we build
68% CL belts for the signal position, E, and the number
of signal events Ns. That for we rank the parameter set
(E, Ns) according to the log ratio of the signal likelihood
to the background one, as:

LNR(E, Ns, Ne) = 2 ln(pi(ni; 0, Ne))−2 ln(pi(ni; Ns, Ne)),
(12)

where the bracket probabilities pi where given previously
in Eq. 6. Low values of LNR are in favour of the signal
hypothesis over the background one.

1. Dealing with nuisance parameters

From the latter test statistic the most rigorous way to
proceed would be to build 2-dimensional confidence belts
on the parameter set (E, Ns). However, the challenge
requires to build individual confidence belts on E and
Ns separately. Therefore one has to deal with nuisance
parameters issues. That for, we define the following ∆X

test statistics:

∆E(E, Ne) = inf
Ns

LNR − inf
E,Ns

LNR, (13)

∆Ns
(Ns, Ne) = inf

E
LNR − inf

E,Ns

LNR. (14)

The 68% CL belt on X is the set of parameters that
satisfy to ∆X ≤ ∆X,0, whith ∆X,0 a threshold value
determined by toy Monte-Carlo in order to ensure the
correct coverage. However, although the quantities ∆E

and ∆Ns
do not depend on Ns and E respectively, their

statistic laws however do. Consequently, the threshold
levels ∆X,0 depend on the true values of both parameters
E and Ns and furthermore on Ne. In order to deal with
the additional nuisance parameter, Ns or E, we use the
plugin method for the construction of the confidence
belt. That is to say, we assume as the truth the most
likely parameter value, the one minimising the LNR.

2. Technical issues

The LNR is a priori not a straightforward function
to minimise. It is continuous only by steps with E in
[0; 1]. By moving the centre of the bracketing interval
from 0 to 1, the number of events, ni, within the bracket

varies by ±1 each time a new event enters or exits the
bracket. At these positions the bracket probabilities, and
so the LNR, are discontinuous. There are at most 2Ne

of these discontinuities. However, one can check that
the continuous segments between these points are mono-
tonic. Therefore, the minimum of the LNR, as E, is
necessarily reached as the limit from the right or from
the left at one of the discontinuities. Therefore, in or-
der to minimise the LNR, as E, it is enough to evaluate
the limits at the discontinuities. This takes at most 4Ne

function evaluations. With typical values of Ne ≃ 1000
this method is still quite CPU consuming, but it provides
a robust result for the minimisation. The minimisation
with Ns is more straightforward. For a fixed E the LNR
has a single minimum reached in the neighbourhood of
µs = (ni − Nepb,1)/(ps,1 − pb,1). Therefore it is enough
to evaluate the LNR at a few integer values of Ns around
µs. The absolute minimum of the LNR is obtained by
combining the two latter properties.

Despite the latter optimisations, the determination by
toy Monte-Carlo of the threshold values, ∆X,0, is very
CPU consuming. Therefore, we tabulated the results for
various values of E, Ns and Ne spanning the ranges [0; 1],
[1; 350] and [500; 1500]. For the analysis of the BC2 data
the threshold values are then interpolated back from the
tabulated values.

A last issue is that the confidence belts we obtain for
E do not necessarily resume to a single interval. They
can be an union of several disjoint intervals. However,
the challenge does not allow to produce such results as
outcome. Therefore, whenever this happens we define as
the confidence belt the smallest interval that contains our
results. Consequently we can expect our confidence belts
on E to be over-conservative.

3. Converting Ns to a signal rate

The challenge actually requires to provide a confidence
belt for a signal rate, D, not for the number of signal
events, Ns. But, to our understanding it is possible to
estimate only the ratio of the signal to the background
rates. The absolute scale seems to be ill defined. In order
to nevertheless provide an estimate for D, we apply the
following conversion rule:

D

A
=

Ns

Ne − Ns

, (15)

with A = 10000, the quoted average background rate.

D. Results

The algorithms described previously were imple-
mented in C++ as a toolbox class. The full code is
available for download from http://clrwww.in2p3.fr/
lhcb/bc2/bc2prob1.tar.gz.



TABLE I. Statistics for test bench cases. Are indicated the
power, β, and the coverages, αE and αNs , for parameters E

and Ns.

E 0.2 0.5 0.9
D 1010 137 18
Ns 92 14 2

β (%) 100 87 12
αE (%) 78 79 63
αNs (%) 64 58 9

1. Test bench cases

We computed the power, β, of the test for a signal ev-
idence for the 3 test bench cases: (D, E) = (1010, 0.1),
(137, 0.5) and (18, 0.9). For these 3 cases, we also checked
the coverage of the confidence belts on parameters E
and D obtained with the plugin method. We assumed
Ne = 1000 total events and computed Ns according to
Eq. 15. The results obtained are summarised in Table I.
The power varies from ∼100% at (D, E) = (1010, 0.1)
down to 12% at (18, 0.9). For the 2 first cases, (D, E) =
(1010, 0.1) and (137, 0.5) the confidence belts on E tend
to overcover E and undercover Ns. The overcoverage
on E was expected since we resumed the belt to a single
overcovering interval, whereas it is in fact an union of dis-
joints intervals. In the last case, (D, E) = (18, 0.9), the
confidence belt on Ns is way too optimistic. Note that
increasing the signal rate while keeping E = 0.9 results
in a more accurate confidence belt on Ns.

2. BC2 data analysis

The analysis was ran on the 2 · 104 data-sets provided
for the BC2 challenge. The results, in the BC2 format,
is available from http://clrwww.in2p3.fr/lhcb/bc2/
bc2prob1.out.gz.

We found evidence for a signal for 11% of the data
sets, which includes ∼1% of background events from false
alarm. For each signal candidate we built a confidence
belt on the parameter values E and D. The results ob-
tained are summarised as a 2D map in Figure 1. The map
reads as a superposition of the individual confidence belts
for the signal candidates. One sees that candidates are
distributed as spots along a curve in the (E, D) param-
eter space. In particular, two hot spots are visible, at
(E, D) = (0.5, 160) and (0.1, 1300). One also sees that
the last spot at (E, D) = (0.9, 40) is badly resolved along
Ns. This is consistent with the results of Table I.

3. Discussion

The results we obtained seem to indicate that our algo-
rithm is less effective for a signal located at high E than
at lower values. The bracketing interval was indeed op-
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FIG. 1. Map of signal parameter values. The intensity on the
2D map reads as the number of signal candidates for which the
individual confidence belts include the point of coordinates
(E, D)

timised for S/
√

B assuming a significant contamination
from the noise within the bracket. However, this criterion
is no more relevant at high marks values where the back-
ground events are scarce. Therefore, we tried to vary the
half width ∆ of the bracketing interval. It was seen that
for the test bench point (E, D) = (0.9, 18) the power of
the test only slightly increases with the bracket length, up
to 15% for ∆ = 3σ. However, simultaneously the power
then decreases to 83% for signals at (E, D) = (0.5, 137).
Therefore, although there might be room for an opti-
misation of the bracket length ∆ varying with E, the
improvement one would get seems to be only mild.

II. PROBLEM 2: A MONTE-CARLO

PARAMETRISED EXAMPLE

As for problem 1, the observation is a data-set of ∼1000
events for which one measured the marks, x ∈ [0; 1]. But
now the events are distributed according to 3 processes,
called signal, background 1 and background 2. Further-
more, we do not have an exact parametrisation of the
statistic laws of the 3 processes, but a representative set
of 5000 Monte-Carlo events, for each. Again, the chal-
lenge is to build the most powerful method to detect any
signal event in the data-set for a false alarm rate smaller
than 1%, and to provide an estimate of the number of
signal events, Ns.

The analysis is based of the Kolmogorov-Smirnov
statistic (KSS). First we draw a parametrisation of the
signal and noise cumulative density functions (cdf) from
the Monte-Carlo samples. Then we compare the data-set
empirical distribution functions (edf) to these parametri-
sation for various hypothesis on the fractions of signal
and background events.



TABLE II. Exponents for the parametrisation of the Monte-
Carlo distribution functions.

Backg. 1 Backg. 2 Signal
αi 0.402 1.008 4.744

DNe (%) 1.21 0.59 0.86
p − value (%) 46 99 86

A. Parametrisation of the signal and backgrounds

statistic laws

Let us assume a set of Ne events with marks xi, i ∈
[1; Ne]. We write the empirical distribution function of
this set as:

FNe
(x) =

1

Ne

Ne
∑

i=1

H(x − xi), (16)

with H the Heaviside step function, as H(x) = 0 for
x < 0 and H(x) = 1 elsewhere. The empirical distri-
bution function converges to the cdf, F , as Ne goes to
infinity. A measurement of the agreement between both
distributions is given by the Kolmogorov-Smirnov statis-
tic. It writes as:

DNe
= sup

x∈[0;1]

|F (x) − FNe
(x)|. (17)

Numerically, the KSS statistic is easily computed by sort-
ing the marks values xi in ascending order. The, supre-
mum in Eq. 17 is achieved as the limit on the right or
on the left at one of the values x = xi taking the value
|F (xi) − i| or |F (xi) − (i − 1)|. The signal and back-
ground cdf were found to be well approximated by simple
power law functions, the like:

F (x) = xαi , (18)

with exponent values αi fitted in order to minimise the
KSS. The estimates for the exponents, as well as the
corresponding KSS p-value are listed in table II. Fig-
ure 2 illustrates the agreement between the power law
parametrisation and the Monte-Carlo data.

B. Evidence for a signal

1. Test statistic

In order to claim evidence for a signal we compare the
KSS for the two hypothesis: H0 : {background only} and
H1 : {signal+background}. Therefore, let us write f1, f2

and fs the fractions of background 1, background 2 and
signal, with f1 + f2 + fs = 1. The corresponding cdf
writes:

F (x; f1, f2, fs) = f1x
α1 + f2x

α2 + fsx
αs , (19)
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FIG. 2. Processes distribution functions. From the upper
to the lower the curves correspond to background 1 (black),
background 2 (blue) and signal (red). The solid curve stands
for the cdf parametrisation and the dashed one for the Monte-
Carlo edf.

where the exponents values αi were given in Table II. We
further define the ∆KSS statistic as:

∆DNe
(fs) = inf

f1,f2

DNe
− inf

f1,f2,fs

DNe
, (20)

where for the KSS statistic DNe
one assumes the fractions

fi for the cdf and where the minimisation’s are subject to
the conditions fi ∈ [0; 1] and the sum of fi being equal
to 1. Following, the value of ∆DNe

(fs = 0) provides
a comparison of the hypothesis H0 and H1. Whenever
there is a significant improvement in the KSS by assum-
ing H1 instead of H0, that is to say ∆DNe

(fs = 0) high
enough, we claim evidence for a signal. We tried 2 other
test statistics, the KSS pdf and cdf. They were found
to be less or as powerful while requiring more intensive
computations.

Practically, the minimisation of the KSS with respect
to the fractions of signal and background is done numer-
ically with the DMNFB function of the PORT library
(http://www.netlib.org/port/). We use a penalty
term in order to ensure the condition

∑

fi = 1. Note
that the determination of the absolute minimum, with
respect to fs, suffers from local minima.

2. Test critical value

The number of background events in a set, N1 and
N2, are Gaussian distributed with known momentum,
(µ1 = 900, σ1 = 90) and (µ2 = 100, σ2 = 100), and trun-
cated to positive integer values. Following, significantly
high values of Ne -whatever the marks distribution- are
against the background only hypothesis. However, we de-
cided not to use this information as an indication against
H0 because we do not want to accept tail background



events even though the distribution shape exhibits no
indication for a signal. Therefore, we build p-values
given the total number of background events, Nb, with:
Nb = N1 + N2 = Ne − Ns, and where Ns is the assumed
number of signal events in the set.

For a given total number of background events, Nb, it
is enough to let only N1 be Gaussian distributed, trun-
cated to [0; Nb], but with parameters values (µb, σb) given
by a weighted mean, as:

µb =
µ1σ

2
2 + (Nb − µ2)σ

2
1

σ2
1 + σ2

2

, (21)

σb =
σ1σ2

√

σ2
1 + σ2

2

. (22)

The number of background 2 events falls from N2 = Ne−
N1−Ns. Under H0 : Ns = 0, we tabulated by toy Monte-
Carlo the critical values C99(Ne) of the ∆KSS for various
values of Ne and for a false alarm rate lower than 1%.
Following, we claim evidence for a signal, provided that
∆DNe

(fs = 0) > C99(Ne).

C. Confidence belt on Ns

The confidence belt on Ns is built from the ∆KSS, as
for the test of the background only hypothesis. The value
Ns is accepted in the confidence belt provided that the
KSS for the hypothesis fs = Ns/Ne is close enough to the
global minimum of DN2

. That it to say: ∆DNe
(fs) ≤

C68(Ne, Ns). The critical values C68(Ne, Ns) are tab-
ulated by toy Monte-Carlo, given the total number of
background events Nb = Ne − Ns, in order to ensure a
68% coverage.

D. Results

As for problem 1, the algorithms for the analysis of
problem 2 data were implemented in C++ as a toolbox
class. The code is available from http://clrwww.in2p3.
fr/lhcb/bc2/bc2prob2.tar.gz.

1. Test power

From toy Monte-Carlo we computed the power of the
test for detecting a signal for various values of the number
of events Ns. The background was generated without any
assumption on the total number of events. The results
obtained are shown on Figure 3. In the limit Ns goes to
0 we recover the 1% false alarm rate. For the test bench
case Ns = 75 we have a power of β(75) = 76.1 ± 0.1%.

2. BC2 data analysis

The results for the 2 · 104 data-sets provided for the
BC2 challenge can be downloaded from http://clrwww.

in2p3.fr/lhcb/bc2/bc2prob2.out.gz.
We found evidence for a signal for 9% of the data sets,

including ∼1% of background events from false alarms.
For each signal candidate we built a confidence belt on
the parameter value Ns. The frequencies of the obtained
values of Ns are shown in Figure 4. About half of the
signal candidates are compatible with a number of events
in the range 100 − 120. There are almost no candidates
compatible with Ns ≤ 30, whereas the power of the test
is still of β(30) = 15.0%.
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FIG. 3. Power of the test for a signal as a function of the
number of signal events Ns.
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FIG. 4. Frequency of Ns values. The frequency reads as
the fraction of signal candidates for which the confidence belt
includes the value Ns


